π Kubernetes Monitoring and Observability
Master Kubernetes monitoring and observability with this in-depth guide. Learn how to implement Prometheus and Grafana, set up custom metrics, create powerful dashboards, and establish effective alerting strategies. Essential knowledge for maintaining production-grade Kubernetes clusters.
Kubernetes Monitoring and Observability
Learn how to implement comprehensive monitoring and observability in your Kubernetes clusters to ensure optimal performance and quick troubleshooting.
What Weβll Cover
- Setting up Prometheus and Grafana
- Custom Metrics and Service Monitors
- Alert Management
- Log Aggregation
- Distributed Tracing
Prerequisites
- Working Kubernetes cluster
- Helm installed
- Basic understanding of monitoring concepts
Installing Prometheus Operator
First, letβs set up Prometheus Operator using Helm:
# Add Prometheus community charts helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm repo update # Install Prometheus Stack helm install monitoring prometheus-community/kube-prometheus-stack \ --namespace monitoring \ --create-namespace Custom ServiceMonitor Configuration
apiVersion: monitoring.coreos.com/v1 kind: ServiceMonitor metadata: name: app-monitor namespace: monitoring spec: selector: matchLabels: app: my-app endpoints: - port: metrics interval: 15s namespaceSelector: matchNames: - default Creating Custom Metrics
Example of a custom metrics endpoint in Go:
package main import ( "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" ) var ( httpRequestsTotal = prometheus.NewCounterVec( prometheus.CounterOpts{ Name: "http_requests_total", Help: "Total number of HTTP requests", }, []string{"method", "endpoint"}, ) ) func init() { prometheus.MustRegister(httpRequestsTotal) } Grafana Dashboard Configuration
Example dashboard JSON:
{ "dashboard": { "id": null, "title": "Application Overview", "panels": [ { "title": "Request Rate", "type": "graph", "datasource": "Prometheus", "targets": [ { "expr": "rate(http_requests_total[5m])", "legendFormat": " " } ] } ] } } Alert Configuration
PrometheusRule example:
apiVersion: monitoring.coreos.com/v1 kind: PrometheusRule metadata: name: application-alerts namespace: monitoring spec: groups: - name: application rules: - alert: HighErrorRate expr: | rate(http_requests_total{status=~"5.*"}[5m]) / rate(http_requests_total[5m]) > 0.1 for: 5m labels: severity: critical annotations: description: Error rate is above 10% for 5 minutes Log Aggregation with Loki
Installing Loki stack:
helm repo add grafana https://grafana.github.io/helm-charts helm install loki grafana/loki-stack \ --namespace monitoring \ --set grafana.enabled=false Distributed Tracing with Jaeger
Jaeger deployment:
apiVersion: apps/v1 kind: Deployment metadata: name: jaeger spec: selector: matchLabels: app: jaeger template: metadata: labels: app: jaeger spec: containers: - name: jaeger image: jaegertracing/all-in-one:latest ports: - containerPort: 16686 - containerPort: 14268 Best Practices
- Metric Collection:
- Use meaningful labels
- Follow naming conventions
- Keep cardinality under control
- Alerting:
- Define clear severity levels
- Avoid alert fatigue
- Include runbooks
- Dashboard Design:
- Start with overview
- Use consistent layouts
- Include documentation
Video Resources
Monitoring Fundamentals
- Kubernetes Monitoring with Prometheus by TechWorld with Nana
- Grafana Dashboards Tutorial by The Digital Life
Advanced Monitoring
- PromQL Deep Dive by Julius Volz
- Kubernetes Monitoring Architecture by CNCF
Observability Practices
- Distributed Tracing with Jaeger by Juraci PaixΓ£o
- Logging Best Practices by Cloud Native Skunkworks
Additional Resources
This post is licensed under CC BY 4.0 by the author.